Decoding the science of spider webs could help work towards a cure for Alzheimer’s disease
The surprising parallel between spider silk spinning and fibres toxic to humans could one day lead to new clues about how to fight neurodegenerative disorders.
Really, we should envy spiders. Imagine being able to make silk like they do, flinging it around to get from place to place, always having a strong-as-steel safety line or spinning a comfy hammock whenever they need a rest.
The fascinating properties of spider silk make it no wonder that scientists have been trying to unravel its secrets for decades.
If we could understand and recreate the spinning process, we could produce artificial spider silk for a range of medical applications. For example, artificial silk can help regenerate the nerves that connect our brain and limbs, and can shuttle drug molecules directly into the cells where they are needed.
Spider silk is made of proteins called spidroins, which the spider stores in a silk gland in its abdomen. There are several types of spidroin for spinning different sorts of silk. Spiders store them as a liquid that resembles oil droplets.
But one of the questions that has eluded scientists so far is how spiders turn these liquid droplets into silk. We decided to investigate why the spidroins form droplets, to get us closer to replicating a spider’s spinning process.
Weaving a web
The trick that spiders use to speed up their spinning process...